Critical Groups of Simplicial Complexes
نویسندگان
چکیده
We generalize the theory of critical groups from graphs to simplicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these critical groups explicitly as cokernels of reduced Laplacians, and prove that they are finite, with orders given by weighted enumerators of simplicial spanning trees. We describe how the critical groups of a complex represent flow along its faces, and sketch another potential interpretation as analogues of Chow groups.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملSOLVABILITY OF FREE PRODUCTS, CAYLEY GRAPHS AND COMPLEXES
In this paper, we verify the solvability of free product of finite cyclic groups with topological methods. We use Cayley graphs and Everitt methods to construct suitable 2-complexes corresponding to the presentations of groups and their commutator subgroups. In particular, using these methods, we prove that the commutator subgroup of $mathbb{Z}_{m}*mathbb{Z}_{n}$ is free of rank $(m-1)(n-1)$ fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011